This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

To cite this Article Iloukhani, Hossein , Reddy, K. Dayananda and Rao, M. V. Prabhakara(1985) 'Excess Volumes of Trichloroethylene with Some Aliphatic and Alicyclic Ketones at 303.15K and 313.15K', Physics and Chemistry of Liquids, 14: 3, 181 – 188

To link to this Article: DOI: 10.1080/00319108508080981 URL: http://dx.doi.org/10.1080/00319108508080981

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Excess Volumes of Trichloroethylene with Some Aliphatic and Alicyclic Ketones at 303.15K and 313.15K

HOSSEIN ILOUKHANI, K. DAYANANDA REDDY and M. V. PRABHAKARA RAO

Chemical Laboratories, S.V. University, TIRUPATI-517502, Andhra Pradesh, India.

(Received April 11, 1984)

Excess volumes on mixing for binary mixtures of trichloroethylene with aliphatic ketones and alicyclic ketones have been determined dilatometrically. The V^E data are reported over the complete mole fraction range at 303.15K amd 313.15K. Aliphatic ketones include methylethylketone, methylpropylketone, diethylketone and alicyclic ketones are cyclopentanone and cyclohexanone. The measured V^E values are negative over the entire composition range. Temperature effect is also studied for all the binary systems. The observed values are interpreted in terms of (i) formation of hydrogen bond and (ii) dipole-induced dipole interactions between the dipole of the ketone and trichloroethylene.

1 INTRODUCTION

The present paper reports measurements of excess volumes for mixtures of trichloroethylene with methylethylketone, methylpropylketone, diethylketone, cyclopentanone and cyclohexanone at 303.15K and 313.15K. These measurements were made as part of continuing project on the thermodynamic properties of nonelectrolyte solution¹⁻³.

2 EXPERIMENTAL

Apparatus

Excess volumes were determined directly by the use of a dilatometer described by Reddy and Naidu.⁴ The mixing cell consisted of a *U*-tube of pyrex glass with mercury at the bottom to separate the two components. One arm of the U-tube was fitted with a capillary tube and the other arm was closed with a ground-glass stopper. Seven dilatometers with different capacities were used to cover the entire composition range. The composition of the mixture was determined by direct weighing. The dilatometers were kept in a thermostat controlled to ± 0.01 K. The excess volumes are accurate to ± 0.003 cm³ mol⁻¹. The benzene + cyclohexane system at 298.15 K has been suggested as a standard for dilatometry. The measured excess volumes for this system are in good agreement with the earlier values reported in literature.⁵

Boiling K	point	Density, ρ g · cm ⁻³		
Expt.	Lit. ^{5,7}	Expt.	Lit.5,7	
360.20	360.34	1.45134	1.4514	
352.60	352.79	0.79448	0.79452	
373.40	373.55	0.79661	0.79656	
375.00	375.15	0.80460	0.80461	
403.70	403.80	0.93898	0.93902	
428.70	428.80	0.93760	0.93761	
	Boiling K Expt. 360.20 352.60 373.40 375.00 403.70 428.70	Boiling point K Expt. Lit. ^{5,7} 360.20 360.34 352.60 352.79 373.40 373.55 375.00 375.15 403.70 403.80 428.70 428.80	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

TABLE I	
Boiling points and densities of the pure compounds a	at 303.15K

Materials

Trichloroethylene (BDH), methylpropylketone (Fluka), and cyclohexanone (BDH) were purified by the standard method described by Riddic and Bunger⁶. Methylethylketone (BDH) and diethylketone (BDH) were dried over potassium carbonate for 3 days, then boiled for 2 hours and distilled as reported by Naidu.⁷ Cyclopentanone (Fluka) was dried over anhydrous sodium sulphate for 2 days and then fractionally distilled. The purity of the compounds was checked by measuring densities and boiling points. The densities were measured by using a bicapillary pycnometer which gave an accuracy of 5 parts in 10⁵. The boiling points were measured using a Swietoslawski type ebulliometer which gave an accuracy of ± 0.2 K. The measured values are presented in Table I along with the literature values reported by Timmermans⁸ and Riddic *et al.*⁶

Results and Discussion

The excess volumes at 303.15K and 313.15K for trichloroethylene mixtures are listed in Table II and these are graphically represented in Figure 1–5. For each mixture, the excess quantities are fitted by the method of least-squares

FIGURE 1 Excess volumes-composition curves for trichloroethylene with methylethylketone at 303.15K and 313.15K.

FIGURE 2 Excess volumes-composition curves for trichloroethylene with methylpropylketone at 303.15K and 313.15K.

FIGURE 3 Excess volumes-composition curves for trichloroethylene with diethylketone at 303.15K and 313.15K.

FIGURE 4 Excess volumes-composition curves for trichloroethylene with cyclopentanone at 303.15K and 313.15K.

FIGURE 5 Excess volumes-composition curves for trichloroethylene with cyclohexanone at 303.15K and 313.15K.

TA	BI	ĿE	II

Excess volumes V^E (cm³ mol⁻¹) of trichloroethylene with ketones at 303.15K and 313.15K

Mole fraction of trichloroethylene x_A	$\begin{array}{c} \text{Mole fraction of} \\ \text{trichloroethylene} \\ V^E & x_A \end{array}$		V ^E
Trichlor	roethylene -	- methylethylketone	
303.15K		313.15K	
0.1662	-0.097	0.1392	-0.066
0.2093	-0.124	0.2005	-0.098
0.3443	-0.182	0.3114	-0.159
0.4056	-0.194	0.4554	-0.217
0.5228	-0.198	0.5266	-0.223
0.6183	-0.177	0.6019	-0.212
0.7003	-0.148	0.7423	-0.152
0.7826	-0.119	0.7911	-0.129
0.8393	-0.095	0.8303	-0.107
Trichlor	oethylene +	methylpropylketone	
0.1515	-0.094	0.1414	-0.097
0.2023	-0.123	0.2030	-0.135
0.3416	-0.190	0.3319	-0.212
0.4404	-0.224	0.4554	-0.260
0.5139	-0.232	0.5502	-0.262

Mole fraction of trichloroethylene		Mole fraction of trichloroethylene		
XA	V^E	x _A	V^E	
0.5808	-0.226	0.6273	-0.245	
0.6656	-0.210	0.7188	-0.204	
0.7337	-0.178	0.7686	-0.171	
0.8505	-0.110	0.8409	-0.120	
Trich	loroethylen	e + diethylketone		
303.15K		313.15K		
0.1730	-0.110	0.1379	-0.080	
0.2119	-0.133	0.2314	-0.144	
0.3889	-0.240	0.3553	-0.226	
0.4503	-0.263	0.4313	-0.258	
0.5237	-0.263	0.5051	-0.270	
0.6616	-0.225	0.5519	-0.268	
0.7352	-0.182	0.6226	-0.250	
0.7713	-0.157	0.7389	-0.194	
0.8505	-0.105	0.8039	-0.145	
		0.8412	-0.115	
Trichl	oroethylene	+ cyclopentanone		
0.1616	-0.108	0.1319	-0.124	
0.2223	-0.150	0.2004	-0.185	
0.3716	-0.249	0.3611	-0.285	
0.4250	-0.263	0.4409	-0.303	
0.4554	-0.268	0.5010	-0.294	
0.5103	-0.273	0.5513	-0.280	
0.5937	-0.248	0.6378	-0.240	
0.6693	-0.213	0.7716	-0.146	
0.7712	-0.147	0.8069	-0.120	
0.8221	-0.113	0.8359	-0.101	
Trich	loroethylene	+ cyclohexanone		
0.1505	-0.147	0.1619	-0.180	
0.2213	-0.207	0.2503	-0.269	
0.3717	-0.294	0.3443	-0.340	
0.4334	- Q 310	0.4714	-0.375	
0.5192	-0.321	0.5129	-0.368	
0.5603	-0.313	0.5666	-0.348	
0.6004	-0.300	0.6219	-0.324	
0.7114	-0.246	0.7070	-0.265	
0.7707	-0.200	0.7813	-0.208	
0.8319	-0.157	0.8314	-0.166	

TABLE II (continued)

186

TABLE III

Values of the parameters a_0 , a_1 , and a_2 of the Eq. (1) and the standard deviation $\sigma(V^E)$.

System	Т	a_0	<i>a</i> ₁	<i>a</i> ₂	σ
	ĸ	cm ³ mol ⁻¹			
Trichloroethylene + methylethylketone	303.15 313.15	-0.7883 -0.8747	0.0357 -0.1231	0.2004 0.4858	0.005
Trichloroethylene + methylpropylketone	303.15 313.15	-0.9205 -1.0382	$-0.1068 \\ -0.0754$	0.2584 0.4281	0.002 0.003
Trichloroethylene + diethylketone	303.15 313.15	-1.0531 -1.0543	$-0.0611 \\ -0.1229$	0.6029 0.6263	0.003 0.006
Trichloroethylene + cyclopentanone	303.15 313.15	-1.0796 -1.1812	0.0515 0.3056	0.7083 0.5826	0.004 0.003
Trichloroethylene + cyclohexanone	303.15 313.15	- 1.2728 - 1.4704	0.0433 0.1619	0.3147 0.4967	0.002 0.006

using the polynomial form:

$$V^{E} = x_{A}(1 - x_{A}) \sum_{i=0}^{\infty} a_{i}(2x_{A} - 1)^{i}$$
(1)

where x_A refers the mole fraction of trichloroethylene. The coefficients a_i and corresponding standard deviation σ are given in Table III. The binary mixtures formed by trichloroethylene + ketones have negative values of V^E over the entire range of composition at both the temperatures.

In these systems the curves are symmetrical and the maxima V^E value is around 0.5 mole fraction.

The numerical values of the excess volumes at both the temperatures of interest for the trichloroethylene with the ketones decrease in the order:

Methylethylketone > methylpropylketone > diethylketone

> Cyclopentanone > cyclohexanone

The V^E values for the systems methylpropylketone and cyclohexanone with trichloroethylene become more negative with increase in temperature and there is no temperature effect for the remaining systems. The observed V^E values are explained qualitatively in terms of (i) formation of hydrogen bonding between trichloroethylene and ketones, (ii) dipole-induced dipole interactions between the dipole of the ketone and trichloroethylene.

Acknowledgement

One of the authors (Hossein Iloukhani) is thankful to the University authorities for providing the necessary facilities to carry out the work.

References

- 1. M. V. P. Rao, P. R. Naidu, Can. J. Chem., 54, 2280 (1976).
- 2. J. Karunakar, K. Reddy, M. V. P. Rao, J. Chem. Eng. Data, 27(3), 346 (1982).
- 3. H. Iloukhani, K. Reddy, M. V. P. Rao, J. Solution Chem. 13, 203 (1984).
- 4. K. S. Reddy, P. R. Naidu, Can J. Chem., 55, 76 1977.
- 5. D. J. Stookey, H. M. Sallak, B. D. Smith, J. Chem. Thermodyn., 5, 741 (1973).
- J. A. Riddic, W. S. Bunger, Organic Solvents in Techniques of Chemistry, 3rd ed. Vol II, Wiley Interscience (New York, 1970).
- 7. P. R. Naidu, Aust. J. Chem., 23, 967 (1970).
- J. Timmermans, *Physico-chemical Constants of Pure Organic Compounds*, Elsevier Publishing Company (Amsterdam, 1965).